

INNOVATIVE TECHNOLOGIES FOR THE CHEMICAL AND PHARMACEUTICAL SECTOR

4th Edition of CII's ChemPharma Summit, Hyderabad

June 20 – 21, 2024

Demand for Heating

HEATING DEMAND IN CHEMICALS AND PHARMACEUTICALS:

- With production processes being energy intensive, these industries together account for, roughly
 - 20% of total worldwide energy demand and
 - 14% of global industrial greenhouse gas (GHG) emissions.

*Source: MAXIMPACT.COM | ENERGY EFFICIENCY – CHEMICALS & PHARMA – Maximpact.com; (Solutions portal)

INDIAN SCENARIO:

- Thermal energy accounts for about 75–80% of total energy consumption by chemical manufacturing units, and is mainly used in equipment such as boilers, thermic fluid heaters, hot air generators, dryers, etc.
- Electricity accounts for the remaining 20–25% of energy consumption.
- Demand for chemical products in expected to grow at 9 % during 2020-2025.

*Source: <u>SAMEEEKSHA SEPTEMBER 2022.pdf</u>

Heating Need in Process Industries

Key Processes that require heating: 1) CHEMICALS:

- Chemical Reactor Jacketed Vessel Heating
- Distillation
- Evaporating
- Centrifuging
- Tempering
- Drying

2) PHARMACEUTICALS:

- Sterilization
- Reactor Jacketed vessel heating
- Culture Preparation
- Distillation
- Drying

Aspiration Cleantech Ventu

Promoter Background

attention. always.

inistry of New and Renewable Ener Sovernment of India

Aspiration Cleantech Ventures Leaders in Energy Efficiency Solutions

VISION: Pioneering Sustainable heating revolution **UNIQUENESS:** Working on diverse **Financial models**

About Us

5+ MW industrial heat pumps installed

2+ MW industry scale solar thermal installed

Introduced India's first 90 ℃ & 120 ℃ heat pump

Aspiration Cleantech Ventures

Leaders in Energy Efficiency Solutions

Unique ESCO model for industrial heating though heat pumps and solar

Research and Developm at IIT Madras

OUR JOURNEY

Aspiration Cleantech Ventures

Leaders in Energy Efficiency Solutions

Metric ton emissions eliminated

Our Services

Solar heat for industrial process

>> Rooftop installation for 40-120 °C >>> Energy security for 25 years

Assured heat servicing

>>> Servicing and maintenance ofheat pump and solar thermal systems of any brand.

Heat pumps for industrial heating

>> 200 - 400% energy eflcient >> Fully online and low maintenance

Thermelgy monitoring

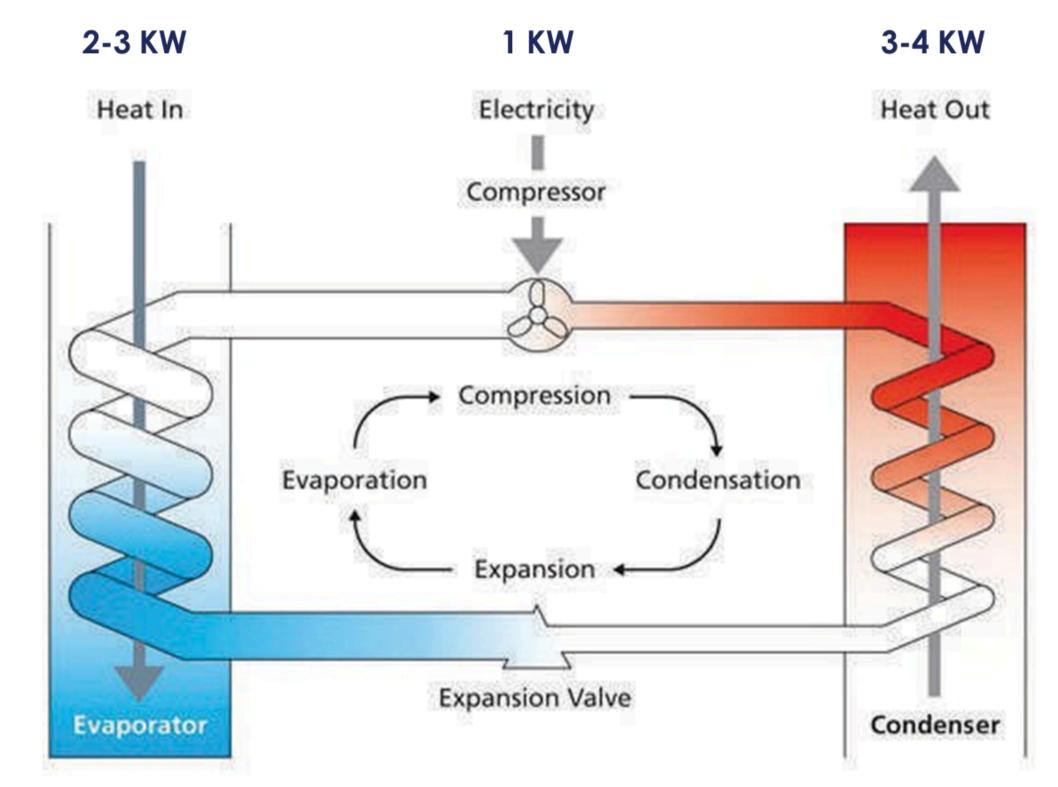
>> Measures real time performance of heating system 24/7 >> Makes autonomous decisions to enhance energy savings

Aspiration Cleantech Ventu

OUR SOLUTIONS

The Products, brought up with Gerfine By Ang Stroject Expertise are as, follows:

- Heat Pumps
- High Temperature Heat Pump Systems (up to 120 Deg. C)
- Heat Pump Dryers
- Solar Dryers
- Waste Heat Recovery Systems
- Organic Rankine Cycle Systems
- Waste to Energy
- Hydrogen Generator



Heat is taken in from the ambient

Heat Pump – Working Principle

The system pumps heat from a low temperature reservoir to a high temperature

Heat pumps use an air conditioning vapor compression cycle with a compressor, condenser, expansion device, and evaporator.

Heat Pumps and Chillers

Unique Features

Deg. C and 120 Deg. C. costs. COP to higher values.

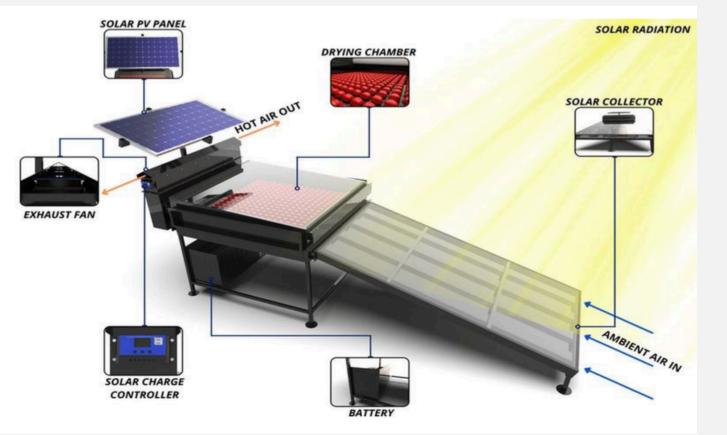
- 1. We offer Heat Pumps totally in 4 different outlet temperature models, namely 60 Deg. C , 80 Deg. C, 90 Deg. C and 120 Deg. C.
- 2. We can achieve from 50 70% savings on operational
- 3. Ideal for non-solar hours, they ensure 24/7 heat when combined with solar thermal energy.
- 4. Payback is around one year for continuous operation.
- 5. They produce free cold air or water, boosting overall COP to higher values.

Aspiration Cleantech Ventures Leaders in Energy Efficiency Solutions

High Temperature heat pumps

Max. 120 °C outlet, Screw Compressor based High Temperature Heat Pump

Key Features


- $\,\circ\,$ The first in India to offer max 120 Deg. C
 - outlet Heat Pump.
- Cascaded model machine
- Offering customized Heat Pumps as per the
 - clients' peak process load needs.

Drying Solutions

1. HEAT PUMP DRYERS

- Working on Vapor Compression Cycle • 50 % Operational Savings compared to
- **Electrical Heaters**
- KEY BENEFITS: - Air flow control
 - Temperature control
- Agricultural produce
 - 2) SOLAR DRYERS:
- Renewable energy powered Dryer • Better performance compared to Traditional Sun-Drying
- Application: Agricultural produce.

• Application: Process industries, Spices,

spiration Cleantech Ventures eaders in Energy Efficiency Solution

Waste Heat Recovery Systems (WHRS)

Industrial exhaust heat, called waste heat, often lost to the environment, can be recovered to improve process efficiency and reduce costs. The recovery method depends on the temperature and economics of the waste heat.

Features of WHR:

- **Benefits**:

1. Use compact and highly efficient tube-intube / shell and tube heat exchangers.

2. Increases process efficiency.

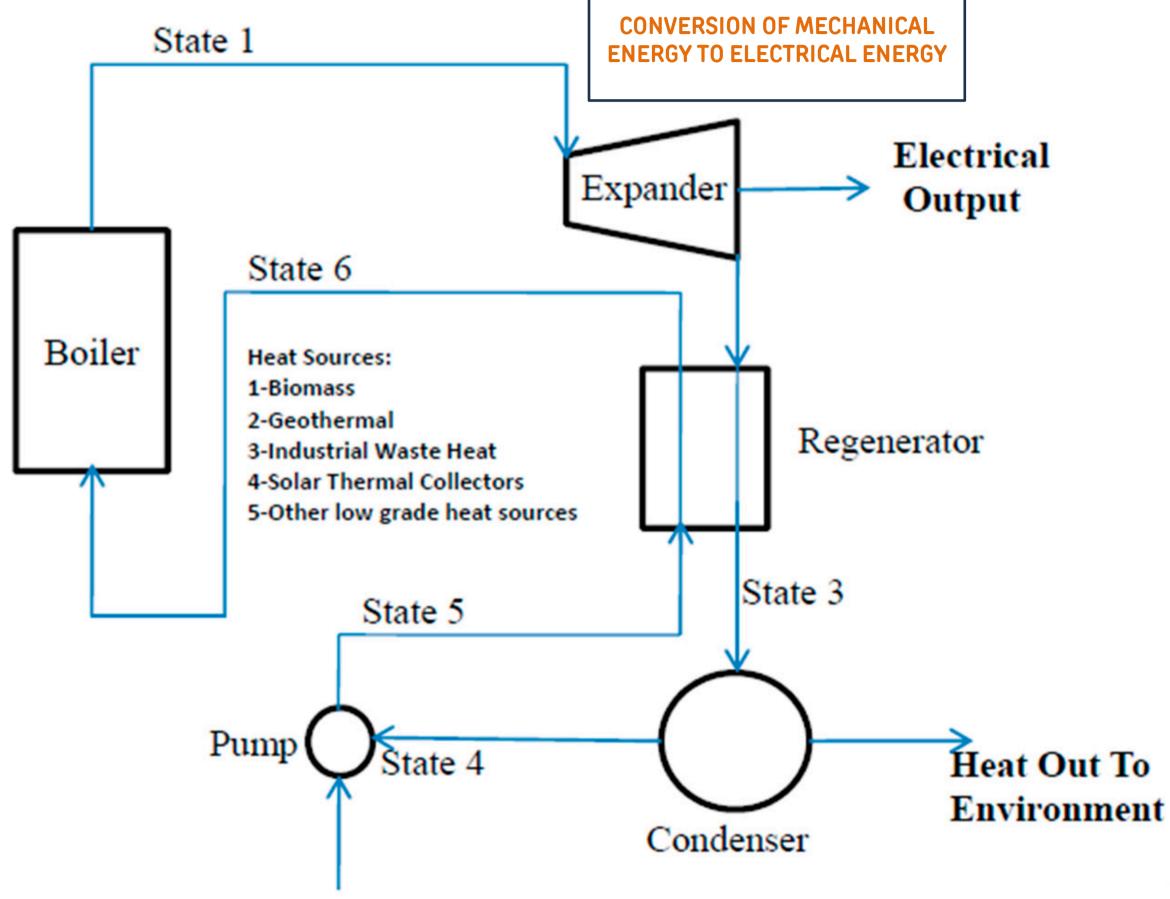
3. Reduces equipment sizes.

4. Lowers auxiliary energy consumption.

5. Decreases pollution.

Common Waste Heat Recovery Methods:

Flue Gas Heat Recovery


Chiller Heat Recovery

Compressor Heat Recovery

Organic Rankine Cycle (ORC)

Working principle

Aspiration Cleantech Ventu

Organic Rankine Cycle Systems

Our patented ORC power plant technology with advanced solutions can offer: 1) Impressive economy 2) High system efficiency

Solutions:

module. 3) Hydrogen Generators 4)

- 1) ORC Turbines Electrical energy from the recovered Waste heat, with the application of Organic fluids.
- 2) Hybrid Power Plant systems :
- i) Waste heat operated ORC Turbines + Flash steam module.
- ii) Geothermal energy based ORC Turbines + Flash steam
- Biomass to Electrical energy / Methanol production, through Waste Heat Recovery (WHR)

Case Studies A leading Indian Chemical industrial client

Process need: 16.5 kL in every 3 hours

Hot Water **Generation Solutio**

Energy Source

Energy Consumptio

Annual fuel operational cost

Annual operational savings on heating – Rs 89 Lakhs

Aspiration Cleantech Vent

	Before	After		
on	Oil fired Hot water generator	High Temperature heat pump		
	Furnace Oil	Electricity		
on	39 Kg / hr. (At peak load)	138 kWh (Rated power consumption		
	Rupees 1.8 Crores	Rupees 91 Lakhs		

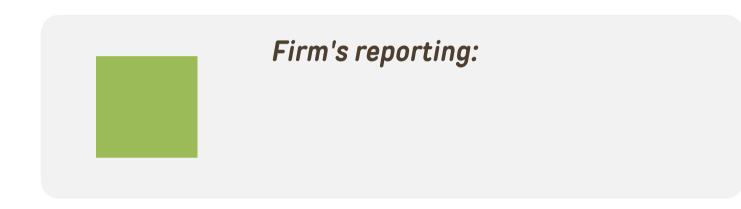
Case Studies

A leading Indian Paints manufacturer

BEFORE INSTAL	ING HEAT PUMP		AFTER HEAT PUMP INSTALLATION		
Source of Heating	Heating LPG Fired Hot water Boiler		Source of Heating	Electricity; Heat Energy of Process Fluid	
LPG Consumption per month (appx.)	5800 Kg		Heat Pump Rated Power Consumption	62.6 kWh	
Annual Fuel Operational Cost	Rs. 61 Lakhs		Annual Operational Cost	Rs. 25 Lakhs	

Rupees 36	Annual Operational savings on fuel
125 Tons of CC	Annual CO ₂ abatement

Aspiration Cleantech Ventures



Sustainability Report intimation $\langle \! \! \checkmark \! \! \rangle \rangle$

A leading Indian Paints manufacturer

Explicit indication in their Annual Report:

An estimated reduction of fuel use to the tune of 3.5 tonnes /month

Reduction in Scope 1 emissions (i.e.) tCO2 by 51% between 2021-22 compared to 2013-14.

2. Fuel Savings in Boiler by using technologies like Heat pump & Heat recovery unit: At the Sriperumbudur plant, the installation of a heat pump has resulted in an estimated reduction of fuel use to the tune of 3.5 tonnes/month. The installation has also led to a reduction in boiler running hours, scope 1 emission, effluent generation by 60 KL/year and 200 KL/year DM water use. A similar initiative has been undertaken in the Rohtak plant as

Aspiration Cleantech Ventures

Ispiration **>>>** energy Pharma – 840 kW Lead – Study

Process areas concentrated in the Pharmaceutical Company:

1) Melting of Jelatin – 200 kL of Hot water consumed day 2) Maintaining Jelatin's viscosity – 10 kL hot water consumed / day

OPERATIONAL COSTING OF THE ELECTRICAL HEATERS							
1	Hourly Energy Consumption of the Electrical Heaters at peak load	kWh	690	COMPARATIVE OPERATIONAL SAVINGS AND PAYBACK PROJECTIONS			DIECTIONS
2	Hourly Energy Consumption Cost	Rs.	4727	12	The Annual Operational Cost on Electrical Energy	Rs.	4,14,04,140
3	Daily Energy Operational Cost of the Heaters	Rs.	1,13,436	13	Annual Operational Cost of the Heat Pump	Rs.	1,84,83,991
4	Annual Energy Operational Cost of the Heater	Rs.	4,14,04,140		proposed		
-	Annual Energy Operational Cost of the Heater	1.5.	4,14,04,140	14	The Comparative Annual Operational Savings	Rs.	2,29,20,149
OPERATIONAL COSTING OF THE PROPOSED HEAT PUMP SYSTEM, FOR FULL LOAD							
5	HP Capacity Designed, to be positioned	kW	840	15	Total Project Value of the Direct Integration set up of the 840 kW Heat Pump System	Rs.	1,93,00,000
6	Rated Input Power of the 840 kW Heat Pump	kW	375.00	16	Return On Investment	months	10.1
7	COP	No unit	2.24				
8	Electrical input needed to generate 690 kW Energy	kW	308.04				
9	Hourly Operational Cost for 690 kW Energy	Rs.	2110.04				
10	Daily Operational Cost of the Heat Pump to deliver the 690 kW Thermal Energy	Rs.	50,641				
11	Annual Operational Cost of the Heat Pump	Rs.	1,84,83,991				

Return On Investment

OPERATIONAL SAVINGS (as per case studies):

- Diesel and Electricity Units to Heat Pumps 50 % Operational Savings
- LPG / Natural Gas Units to Heat Pumps 40 45 % Operational Savings

RETURN ON INVESTMENT:

• Heat Pumps:

The details as per BEE's arrival are as follows:

HEATING CAPACITY (IN kW)	POTENTIAL SAVINGS(IN %)	INVESTMENT (IN LAKHS)	ANNUAL SAVINGS (IN LAKHS)	RETURN ON INVESTMENT (IN MONTHS)	
339	30 - 40	30 - 35	20 - 25	15 - 18	

Clients' Testimonials

"When I saw the proposal for 630 KW Solar Thermal system,I found the ROI really attractive. The fossil fuel saving was 360 litres peThe ROI is quite low for a Solar project of this size."

★ ★ ★ ★ MR SRIVATS RAM Managing Director

"We saved 116 K of Fumace of diring 2013 2014 due to the Solar ayatom 8% more than what war estimated during the proposal stage. We have now idano lied a fow more applications with similar saving potential"

MR RAJARAM Vice President Manufacturing

We wore the fest to alumpt antegration of a Roof Top Solar Thermal systurm with an industrial Process Foating application that runs 24/7. We recently did a workshop to all TVS Group companies explaining about our experienc practical problems and implementation challenges faced and how we overcame then as the others comingatur us can plan their projects better

Thank you!!

We will be glad to answer your doubts and queries

Contact:

Vasantha Kumaran S Application Engineer – Technical Sales Aspiration Cleantech Ventures Pvt. Ltd., Chennai.

9384044453 / vasanth.s@aspcv.com

Bharath Sarangam Business Development Manager Aspiration Cleantech Ventures Pvt. Ltd., Chennai.

9677763167 / bharath@aspcv.com

Aspiration Cleantech Ventu

